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Oscillatory flow in a stepped channel 
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Two-dimensional, unsteady flow of a viscous, incompressible fluid in a stepped 
channel has been studied by the numerical solution of the Navier-Stokes equation 
using an accurate finite-difference method. 

With a sinusoidal mass flow rate, the problem has three governing parameters : the 
Reynolds number, the Strouhal number, and the step height. The effects on the flow 
of varying all three parameters has been investigated systematically. In  appropriate 
parameter regimes, a strong ‘vortex wave’ is generated during the forward phase 
when the flow is over the step into the expansion. Secondary effects on the wave can 
result in a complex flow pattern with each major structure of the flow consisting of 
an eddy with more than one core. No such wave is found during the reverse phase 
of the flow. The generation and development of the wave is examined in some detail, 
and our results are compared and contrasted with those of previous studies, both 
experimental and theoretical, of flow in non-uniform vessels. 

1. Introduction 
Recently there has been considerable interest in unsteady flow in non-uniform 

channels (e.g. Cherdron, Durst & Whitelaw 1978; Armaly et al. 1983; Sobey 1985; 
Yedley & Stephanoff 1985; Ralph & Pedley 1988, 1989,1990 ; Tutty 1992), a problem 
which is important in both engineering and biomechanics, and which is of intrinsic 
interest because of the richness and complexity of the flow patterns that can occur 
in a two-dimensional flow even in a relatively simple geometry. 

In  most of the studies referred to above, a train of propagating waves was observed 
to grow downstream of the non-uniformity in the channel wall(s), with regions of 
closed streamlines (‘eddies ’) beneath the crests and above the troughs. We shall call 
these ‘vortex waves ’ in all cases, even though the mechanism of their generation may 
be different in different examples. Sobey (1985) performed a set of experiments and 
a limited number of computations on both steady and unsteady flow through rigid 
channels with both symmetric and asymmetric expansions. Waves were found in 
both cases, but Sobey felt that the wave in the symmetric channel was fundamentally 
different from that in the asymmetric channel, the former being the result of a shear- 
layer instability, while the latter was a vortex wave forced by the asymmetry of the 
channel. It is the asymmetric problem with the forced vortex wave which is 
investigated here. 

Pedley & Stephanoff (1985) and Ralph & Pedley (1988, 1989, 1990) have 
performed a series of experiments and calculations for flow in a channel with an 
indentation moving in and out on one wall, the flow being steady when the 
indentation was stationary. They found a vortex wave for both viscous and inviscid 
flow, but there were significant differences between the two cases. A much more 
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complex flow pattern was obtained in the viscous case, including (eddy doubling ’ in 
which an eddy which initially shows a high degree of longitudinal symmetry becomes 
markedly asymmetric and eventually splits into at least two separate corotating 
eddies. Pedley & Stephanoff ( 1  985) developed a weakly nonlinear inviscid theory for 
the flow in a channel where there is a forced, time-dependent disturbance to the flow. 
This theory was used successfully to  explain and interpret the experimental 
observations in the moving-wall problem for a certain range of parameter values. Tn 
particular the appearance and propagation of the waves were predicted with 
quantitative accuracy, although details of the eddies were not included. I n  this 
theory, the mechanism for generation of the waves is associated with the 
displacement of the vorticity gradient in the oncoming Poiseuille flow, not with 
viscous disturbances at  the channel walls, which led Pedley & Stephanoff to call the 
wave a ‘vorticity wave’. 

I n  this paper we present numerical solutions of the Navier-Stokes equations for 
oscillatory flow in a rigid channel with a sudden expansion in the form of a step. A 
sinusoidally varying mass flow rate is assumed, and we investigate in turn the effects 
of varying the three governing parameters : the Reynolds number, the Strouhal 
number (the unsteadiness parameter), and the step height. T t  would in addition be 
possible to vary the form of the channel expansion and of the mass flow rate, but 
these aspects are not addressed. We note, however, that  Sobey (1985) performed 
experiments with oscillatory flow in a channel with a 45’ expansion as well as a 90’ 
step, and Tutty (1992) gives numerical solutions for non-sinusoidal pulsatile flow in 
a constricted channel; the results of these studies suggest that, the vortex wave 
phenomenon is robust to such changes. 

The success of the weakly nonlinear inviscid theory in predicting the generation 
and propagation of the vortex wave in the case of a moving indentation with a steady 
upstream flow (Pedley & Stephanoff 1985) suggested that we should look for a 
corresponding theory in the case of oscillatory flow past a fixed indentation. Such a 
theory has been developed (Tutty & Pedley l992), and testing i t  formed part of the 
motivation for the present study. I n  this case there is qualitative agreement with 
some of the results, such as the predictions that waves will be generated and that 
those closest to the step remain approximately stationary. without propagating. 
However, the predicted dependence of the wavelength on the governing parameters 
(e.g. decreasing as the step size increases) is not borne out by the Navier-Stokes 
solutions and the theory cannot be regarded as successful. 

An important motivation for the present and much of the earlier work is 
physiological in nature, because of a hypothesis linking regions of low or oscillating 
wall shear stress in arteries to a local predisposition to  develop atherosclerosis (see 
Ku et al. 1985a, b ) .  Many of the sites that  are prone to atherosclerosis occur where 
there is a rapid change in the cross-sectional area or shape of the vessels, so that flow 
separation is to  be expected. The effect of the vessel geometry on the wall shear stress 
(or wall vorticity) distribution is therefore of considerable interest. Predicted values 
of the wall vorticity are presented below. 

The formulation of the problem is given in $2,  and the numerical method in $3 ,  
including a discussion of computational accuracy. The basic results are presented in 
$4, and the generation and development of the vortex wave are discussed in detail 
in $5, with some concluding remarks in $6. 
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2. Formulation 
The channel expansion takes the form of a step a t  x* = 0 from a dimensional width 

of a* to (I  + e) a*, with the lower wall undisturbed (figure 1) .  The coordinates are non- 
dimensionalized on the upstream channel width so that (x*, y*) = a*(%, y). The 
corresponding velocity components are Uz(u, v) where the reference velocity is 
U$ = &$/a* and Q,* is the peak volumetrie flow rate. The dimensional time is given 
by T * t  where T* is the period of oscillation of the flow. 

The Reynolds number Re and the Strouhal number St are defined by 

Re = lJ$a*/v,  St = a*/(U,* T*), (2.1) 

where v is the kinematic viscosity. The vorticity transport equation becomes 

where the vorticity < is given in terms of the streamfunction $ by 

< = -VZ$. (2.3) 

As usual, (2.4) 

Note that the above non-dimensionalization differs from that of Sobey (1985) in 
that it is based on the channel width rather than half the width. Thus, for a 
particular flow, the values of the Reynolds and Strouhal numbers are double those 
of Sobey. 

The boundary conditions are : no-slip at the walls, 

u = v = O  on y = O  and y =  yw, (2 .5)  

where 
1 ,  x < o  

1 +€, x > o  
y w =  { l < y < I + s ,  x = o  

gives the position of the upper wall; parallel flow upstream and downstream, i.e. 

where n 2 1 (see below) ; and a sinusoidal flow rate 

1 $ = O  011 y = 0, 

l~. = $w = sin (nt) on y = yw. J 
(2.8) 

Thus we have a net flow from left to  right during the first half of the flow cycle 
(i < t < i + $  where i is an integer) and from right to  left during the second half 
(i+i < t < i +  1) .  The initial condition is that  of no motion: 

$ = c = O  as t = 0 .  (2.9) 

The problem defined here has three governing parameters: Re, St ,  and c, the 
magnitude of the channel expansion. The results presented below are based on 
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FIGURE 1. Channel geometry (physical). 

varying the parameters around those for a reference case which has Re = 500, 
St = 0.006, and 6 = 1 .  This set of parameters produces an interesting flow pattern and 
is broadly consistent with those used by Sobey in his experimental work. 

3. Numerical methods 
3.1. Computational formulation and grid 

Rather than placing a computational grid on the physical domain, we have adopted 
a more flexible approach. A conformal transformation was used to map the physical 
channel on a straight channel of unit width (figure 2), and the transformed version 
of the governing equations was solved in computational space. The Navier-Stokes 
equations maintain their form under a conformal transformation, and this approach 
has the advantage that a range of problems can be solved by supplying the Jacobian 
of the appropriate transformation to a general Navier-Stokes solver, and mapping 
the results back to physical space when the calculation is complete. 

Suppose the reverse mapping from computational to physical space is given by 

z = W ( Z ) ,  (3.1) 

where z = x+iy, 2 = X+iY, and W is a complex function. The vorticity transport 
equation and the Poisson equation (2.2), and (2.3) become 

and J c  = -V2$ (3.3) 

respectively, where J = a(x, y)/a(X, Y ) ,  V2 is now the Laplacian in computational 
space, and 

This is the system of equations solved in the present study. 
The mapping is essentially a two-step process : an exponential transform which 

maps the uniform channel in 2-space to a half-plane, followed by a Schwarz- 
Christofiel transform which maps the half-plane to the degenerate polygon formed 
by the physical channel. Combining these steps produces 
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FIGURE 2. The mapping from physical (a)  to computational space ( b )  and a sample (crude) 
computational mesh. 

where the corners (x, y) = (0 , l )  and (0, 1 + E )  in physical space map to 2 = a and b 
respectively in the computational space, with Im (a) = Im ( b )  = 1, and 

b-a = (2/x) ln( i+s) ,  (3.6) 

which ensures that the magnitude of the channel expansion is correct. Given a and 
b, the Jacobian J is calculated directly from (3.5) since J = Idz/dZI2. 

The integration of (3.5) to obtain (the real parts of) a and b and the mapping 
between the grids must be performed numerically. The only difficulty arises from the 
singularity at 2 = b which, if not handled carefully, could adversely affect the 
accuracy of the calculation. The integration procedure is based on that of Sridhar & 
Davis (1985). In moving from 2, and 2, in computational space the corresponding 
change in physical space is given by 

1 -~z(Z-U) t (2 -a ) ;  zi 1 -en(Z-o) -t (2- b)n Z ,  

,1-,0=[ Z - a  ] [7],,[ 2 - b  ] [+] Z O  ’ (3.7) 

where Z = +(Zo + Zl). 
The computational grid used was a uniform rectangular grid in ( X ,  Y ) .  Details are 

given below. A sample (crude) grid is shown in figure 2. The clustering of the points 
near the convex corner is a useful feature as relatively large errors are expected to 
arise there from the singularity in the vorticity. The comparatively large spacing of 
the grid near the concave corner (exaggerated in figure 2 by the crudity of the sample 
grid) caused no problems as the flow is not particularly vigorous there. The grid lines 
with constant X and Yare respectively the streamlines and equipotential lines for the 
idealized case of inviscid irrotational flow. 

3.2. Finite diflerence scheme 
We use a Crank-Nicolson scheme which is second-order accurate in time and fourth- 
order in space. The scheme is essentially an unsteady version of that of Dennis & 
Hudson (1989)’ but it was obtained in a different manner by directly applying 
Numerov’s method in which the differential equations are used to express higher- 
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8 10 

X 

8 12 
FIGURE 3. Labelling of grid points. 

order derivatives in terms suitable for approximation in compact form. Labelling the 
grid points as in figure 3, we obtain 

where h is the grid step. From (3.3) 

V4$ = - V2( JC),. 

Therefore 

Substituting standard second-order finite difference formulae into the right-hand 
side of (3.9) gives a fourth-order correction to the standard second-order scheme 
formed by setting the left-hand side to zero. This produces 

4(@1 + $2 -k $3 + $4) + $5 -k $6 + $7 + $8 -20$o 

= -~h2((Jc)1+(Jg)2+(J~)3+(Jc)4+8(J( )") ,  (3.10) 

a fourth-order finite difference equation which is compact in that it uses only the nine 
points closest to the centre and thus can be applied directly a t  points adjacent to the 
boundary, unlike the usual fourth-order scheme. 

Applying the same method to the vorticity transport equation (3.2) gives 

(3.11) 
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where (8, p) = Re(U, V )  and H = Rest Jac/at.  The left-hand side of this equation is 
the standard second-order difference scheme while the O(h2) term on the right 
provides a fourth-order correction when standard second-order finite difference 
formulae are substituted (strictly the truncation error of (3.11) is O(Re2h4), which 
gives an error of O(Re h4) when the equation is divided by Re to return it to standard 
form). 

Compact fourth-order formulae which use values of the vorticity as well as the 
streamfunction can be derived for the transformed 'velocity' ( U ,  V ) .  However, these 
formulae are likely to have large errors near the convex corner where the vorticity 
is singular, and the more straightforward five-point formulae were used when 
possible. That is, we use 

(3.12) 

a t  points away from the boundary. At points adjacent to the boundary a t  least one 
of these formulae will not be applicable as it involves a point out,side the grid for 
which @ is undefined. At such points the boundary condition for the velocity can be 
incorporated to produce an alternative fourth-order formula. For example, if the 
velocity is zero a t  point 4, then U4 = 0,  and we obtain 

W0 + W2 - 17$r, - u, = 
18h 

(3.13) 

which has truncation error O(h4). Strictly, with the velocity calculated from (3.12) 
and (3.13), the vorticity transport equation is not compact. However, it  still has the 
advantage that, given the velocity, it  can be applied directly a t  all interior points of 
the grid. 

A Crank-Nicolson scheme is obtained by substituting 

(3.14) 

at all points, and replacing the < by 

p+i = 1 2 ( 5  n t l  +r), (3.15) 

with similar formulae for 8 and p, where Cn is the estimate of [ at time tn = nAt. This 
produces an implicit finite difference equation which is second-order accurate in time. 

It remains to specify the numerical boundary conditions. Upstream (x+ T co 
according to whether the flow is from the left or the right) parallel flow was assumed 
and @ and 5 were calculated from the numerical scheme by eliminating all 2- 
derivatives. Downstream, a conventional derivative condition was imposed, namely 

(3.16) 

I n  effect this assumes parallel flow downstream, but avoids the problems caused by 
the small reflected disturbances which can arise if values of @ and 5 are fixed a t  a 
boundary at which there is an outward flow. 

7 FLM 2.41 
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On the walls the streamfunction was specified by (2.7), while the vorticity was 
calculated by a finite difference form of 

(3.17) 

With a second-order streamfunction-vorticity scheme, the compact Woods (i954) 
formula is commonly used (e.g. Ralph & Pedley 1988). Alternatively, a one-sided 
difference formula could be used. Previous work (unpublished) with the present 
fourth-order scheme applied to the steady driven cavity problem showed that, 
provided the grid was sufficiently refined, the results obtained when using a one-sided 
difference formula were not significantly different from those obtained with the 
compact formula analogous to that of Woods. However, for the driven cavity 
problem. convergence of the iterative scheme was faster with the one-sided formula. 
Hence a similar formula was used here. For example, if’ point 12 is on the lower wall, 
we use 

(3.18) 

where the zero normal velocity condition was used in deriving this equation. A 
similar equation wax used on the upper wall. 

-4iFi$12+576~,-216~0+64$,-9@,0 
7h2<&, L 2  = 

3.3. Solution procedure 

An iterative line relaxation scheme was used to solve the system of nonlinear finite 
difference equations given above. For the streamfunction equation (3.10), a 
tridiagonal system was formed by taking the equations along a grid line with 
constant Y (or X ) ,  and treating the values of $ on that line as unknowns and the 
other values of @ and 5 as known using current estimates. A similar tridiagonal 
system can be defined using the vorticity equation (3.11). However, instead of using 
the finitc difference equation as written in ( 3 . i l ) ,  with the left-hand side of the 
equation forming the iteration matrix, part of the fourth-order term on the right was 
moved to the left, in the manner of Dennis & Hudson (1989), to increase the diagonal 
dominance of the iteration matrix, arid thus improve the stability of the iteration 
procedure. The remaining part of the fourth-order term was treated as a forcing term 
and was updated every complete iteration. 

The basic solution procedure for each time step was to  sweep through the grid for 
the streamfunction equation (3.10) updating all values of $, evaluate the new values 
of the ‘velocity’ (U ,  V )  from (3.12) and (3.13), update the boundaryvorticity and the 
forcing terms for the vorticity equation, then sweep through the grid finding the new 
estimates for t h e  vorticity. The procedure was repeated until convergence was 
achieved. Latest values were used where possible and thus the iteration scheme is line 
Gauss-Seidel in nature. A sweep through the grid may be carried using lines along 
the X-direction (constant Y), along Y (constant X ) ,  or alternating the two as in an 
AD1 method. All three were tried and, perhaps surprisingly, there was little 
difference in the computing time required for each. Taking lines in the X-direction 
was used as it was marginally fastest in the test case. 

With a scalar computer, this iteration scheme can be implemented in the obvious 
manner, solving each matrix equation in turn. However, this would be very 
inefficient for a vector machine because of the data dependency in the matrix 
solution algorithm. Thus the basic procedure was modified by introducing red-black 
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ordering and a block solution method. That is, a set of independent tridiagonal 
matrix equations was formed by taking every second line in X ,  and these were solved 
simultaneously rather than consecutively by making the innermost loop a sweep 
across the matrices. A second block solution updated the rest of the values. This 
block solution method enabled the code to vectorize while retaining superior stability 
and convergence properties over, say, the simpler Jacobi method which would also 
vectorize. On a single Cray XMP processor the code ran at 115 to 130Mflops, 
depending on the vector length. 

The convergence criterion was that for all the grid points 

max l@(m+U - @ (m) I < tol, (3.19) 

where m indicates the iteration count. The standard value of to1 was lo-'. 

time from previous values. 
3.4. Accuracy 

A number of factors will affect the accuracy of the numerical solution : the positions 
of the upstream and downstream boundaries, the (spatial) grid step, the time step, 
and the tolerance (tol) of the iterative procedure. 

Test runs were performed with flow over the step and the upstream (left) boundary 
a t  a distance of approximately 5,  10, and 15 units (in the computational space) from 
the step. The difference between the solutions for 5 and 10 was small, and negligible 
for 10 and 15. The results presented below have the upstream boundary at X m 10, 
with the exception of those in figures 5 and 6, when the roles of the left- and right- 
hand boundaries reverse with the bulk flow. A t  t = 0.5 the right-hand boundary was 
fixed in position and then treated as an upstream boundary, with the left-hand 
boundary taking the downstream role. The roles of the left and right boundaries were 
swapped similarly at t = 1.0 when the flow changes direction for the second time. 

Throughout the calculations, a check was kept on the change in the streamfunction 
at  a distance of one channel width (in computational space) upstream of the 
downstream boundary. If the change in $ between successive grid points (i.e. 
I@r+l,i- became greater than 10tol the computational domain was expanded 
downstream. 

Extensive investigations were made of the effect on the solution of the grid step 
h. The method is of fourth spatial order, and was found to behave accordingly, except 
close to the convex corner where, as expected, the singularity in the vorticity 
degraded the performance. Also as expected, the grid resolution required varied with 
the parameters of the flow ; more grid points were needed to obtain a fully converged 
solution with a more vigorous flow. Vorticity gradients are highest near the walls, 
and the most sensitive indicator of error in the solution was found to be the vorticity 
on the walls. Figure 4(a) shows the lower-wall vorticity a t  t = 0.45 for the case with 
Re = 500, St = 0.006, and E = 2, for h = 8, &, A, and &. In terms of convergence with 
the grid step, this particular example has the worst behaviour of all the parameter 
sets for which results are presented. A more typical example is shown in figure 4 ( b ) ,  
which gives the variation in wall vorticity with h for Re = 750, St = 0.006, and 
e = 1 at t = 0.45. Similar behaviour was found for the vorticity on the upper wall, 
with, in particular, the vorticity near the convex corner approaching a limit as the 
grid is reduced in size. Most of the results presented below are for h = A, although 
h = & was used for some of the problems with a less vigorous flow (e.g. Re = 250, 
X t  = 0.006, and e = 1 ) .  

At each time step the initial guess was obtained by a third-order extrapolation in 
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t 

- 1 o L  t = 0.450 

- 10 1 
t = 0.450 

2 = 0.500 - 10 1 
FIGURE 4. The effect of the mesh size and tolerance on the lower-wall vorticity. (a) Re = 500, 

( b )  H e  = 750, S1 = 0.006, E = 1, t = 0.45: ......, h = 1/32; h = 1/48; -, h = 1/64. 
S t = 0 . 0 0 6 , ~ = 2 , t = 0 . 4 5 :  ......, h =  1/32;-.--.- , I t =  1/48;-**- - ,h= 1/64;---,h=1/80. 

(c) RP = 750, St = 0.006, F = 1 ,  t = 0.5, h = 1/64; ~ ~ - - ,  to1 = 10P; - , to1 = 10-7. 
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Note that no specific provision was made for the singularity a t  the convex corner 
(a  on figure 2) : instead the position of the left-hand boundary was adjusted so that 
the corner always lay halfway between grid points. The concave corner ( b )  caused no 
problems as the vorticity is zero there. 

To obtain a fully converged solution it is vital that the tolerance on the iterative 
procedure be set small enough. The tolerance required depended on the flow 
parameters and the grid, a smaller value in general being needed for a more vigorous 
flow and/or a smaller value of h. Figure 4 ( c )  shows the lower-wall vorticity at t = 0.5 
for Re = 750, X t  = 0.006, and E = 1 with to1 = lop6 and For this case, refining 
the grid with to1 = lop6 led to an erratic variation around the converged solution 
which was obtained with to1 = (see figure 4 b ) ,  rather than to the converged 
solution. All the results presented below have to1 = lop7. 

The solutions obtained were relatively insensitive to the time step used, 
presumably because of the fully implicit nature of the numerical scheme. Test runs 
showed little difference between solutions with At = 0.005,0.0025, and 0.001 25. The 
results presented below usually have At = 0.0025, although values with the smaller 
time step (0.01 25) were used when available. The computational time required was 
not strongly dependent on the time step, as the number of iterations required per 
time step decreased with At. However, for any particular combination of flow 
parameters and grid, the size of the minimum time step was limited by the 
convergence properties of the iterative procedure. 

4. Results 
The feature of greatest interest is the large-amplitude vortex wave which develops 

during the forward part of the flow when the fluid is travelling over the step into the 
expanded portion of the channel (see e.g. figure 5). The growth and development of 
this wave are discussed in detail in $5 below. A priori, it might be expected that the 
wavefront is convected with the flow, and this concept provides a useful framework 
in which to examine the effect on the wave of varying the parameters. The non- 
dimensional equations for the motion of a particle in the flow are 

so if the wave front is convected with the flow, the dimensionless distance the wave 
travels downstream should show a strong dependence on St but a relatively weak 
dependence on Re, since Re occurs only in the equations, not the boundary conditions 
or (4.1). Our results show that, for any particular channel (i.e. for a given E ) ,  this 
hypothesis is reasonable, as long as the wave is sufficiently strong. However, 
qualitative agreement between the extent of the wave and the distance travelled by 
a particle in parallel flow is poor for step heights other than E = 1 ($4.4). Another 
general prediction is that if the principal features of the flow show only a weak 
dependence on Re then inviscid mechanisms are likely to be dominant. 

I n  $4.1 the results are presented for the reference case with a channel that doubles 
in width a t  x = 0 ( 8  = l),  and we then consider in turn the effects of varying Re, X t  
and e. 

4.1. Re = 500, St = 0.006, e = 1 
Calculations were performed for this problem to t = 1.5, with streamlines to t = 1.2 
shown in figure 5 : the starting transients have essentially died out by t = 0.2, and the 
sequence from t = 0.2 to 1.2 is periodic (in fact there is little difference between the 
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t = 0.05 

0.15 

0.20 

0.25 

0.70 

y, 
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0.80 

0.90 

0 ..9 5 

~ 

yo/ 
4 

1.10 

1.20 

FIGURE 5 .  Streamlines Re = 500, St = 0.006, E = 1, -1.5 < z < 33.5. The values plotted are in 
increments of 0.05 above $w and below zero, and in increments of a$, between zero and $r,. Unless 
specifically mentioned, the same values are used for the other streamfunction plots. 
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Re = 250 500 750 

t 

0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 

1 

0.OOO 
0.000 

-0.001 
-0.01 1 
- 0.022 
- 0.033 
-0.045 
-0.064 
-0.099 
-0.171 

U 

0.004 
0.050 
0.066 
0.077 
0.084 
0.089 
0.090 
0.095 
0.110 
0.156 

1 

0.000 
0.000 

-0.010 
-0.057 
-0.077 
-0.092 
-0.1 14 
-0.143 
-0.186 
-0.255 

U 

0.008 
0.073 
0.087 
0.095 
0.106 
0.117 
0.125 
0.135 
0.182 
0.258 

1 

0.000 
0.000 

-0.018 
-0.090 
-0.110 
-0.126 
-0.147 
-0.176 
-0.220 
-0.302 

U 

0.01 1 
0.084 
0.100 
0.104 
0.112 
0.122 
0.141 
0.179 
0.229 
0.299 

TABLE 1. Variation of maximum eddy strengths with the Reynolds number: 1 gives the minimum 
value of the streamfunation (which iu zero on the lower wall) and u the difference between the 
maximiim value of the Htreamfunction and the value on the upper wall. St = 0.006, e = 1 .  

streamlines at t = 0.15 and those at t = 1.15). Although St is small this flow is far 
from quasi-steady, with a strong vortex wave which propagates well down the 
channel. The distance travelled by a fluid particle along the centre of a channel of 
width 2 was calculated, assuming parallel flow in the channel. Starting from rest, a 
particle a t  x = 0 at t = 0 would be at  x = 16.1 a t  t = 0.25 when the mass flow is at  
its peak, and at x = 36.5 a t  t = 0.5 when there is no net flow. The particle would 
return during the reverse flow phase, reaching x = 3.21 a t  t = 1 (not x = 0 because 
of the starting transients), and then move to x = 16.8 at t = 1.25 and x = 36.6 at 
t = 1.5, etc. The downstream motion of the wave shown in figure 5 is broadly 
consistent with these values, both in the total length of the wave and in that the 
wave front propagates further during the deceleration of the forward flow ( t  = 0.25 
to  0.5) than during the acceleration ( t  = 0 to 0.25). Also, the full numerical solution 
was examined at  t = 0.25 and the crest of the wave furthest downstream was located. 
A particle located at  the centre of the channel on this crest was then tracked 
downstream until t = 0.5, and indeed appeared to travel with the wave front. 

It can be seen from figure 5 that, although eddies develop beneath the waves in the 
first quarter of the cycle, they become much stronger during the second quarter when 
the mean flow is decelerating. This can also be seen from table 1 which gives the 
maximum eddy strengths for this problem. As well as increasing in strength, the 
eddies increase in size with the result that the movement of the core streamlines away 
from the centreline becomes increasingly pronounced until at t = 0.5 the eddies span 
the channel. Upstream of the larger eddies a second, smaller, eddy develops as the 
main flow moves away from the wall. This secondary eddy grows until it joins the 
main eddy (e.g. a t  t = 0.275 for the first eddy on the lower wall), which then has two 
corotating cores and a smaller counter-rotating eddy trapped between the main eddy 
and the wall. The eddy trapped on the wall is very weak and decreases in size as t 
approaches 0.5, while the secondary corotating core of the main eddy grows in 
strength. This secondary disturbance will be discussed in further detail below (3  5). 

The decelerated flow reverses first a t  the walls, so that at  t = 0.5 (when the mean 
flow reverses) the flow both far upstream and far downstream is reversed near the 
walls and forward in the centre of the channel. However, by t = 0.530 the flow in the 
centre has reversed both upstream and downstream. During the early part of the 
reversed flow, the eddies, which are now attached to the wall opposite the one on 
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FIGURE 6 (a ,  b ) .  For caption see facing page. 

which they originated, rapidly lose their strength, although some waviness can be 
found in the flow in the expanded portion of the channel up to t = 0.75 when the 
reversed flow rate is a t  its peak. By this stage an eddy has formed in the step with 
another very small eddy in the narrow part of the channel a t  the corner. As the 
reverse flow decelerates, the eddy in the step expands, while that on the top 
disappears. During the reversed flow phase, a small disturbance is carried a 
considerable distance up the channel past the constriction, slowly matching to 
parallel flow, but no evidence was found for a large-amplitude wave. I n  this case, 
wave generation occurs only when the flow is directed into the wider part of the 
channel, although the unsteadiness and complexity of the flow makes it impossible 
to attribute this directly to the accompanying flow deceleration. 

When they are first formed the individual eddies show some downstream motion, 
but the wave can be described in general terms as a standing wave with a positive 
group velocity but little or no phase velocity (see Tutty & Pedley 1992). Figure 5 
shows clearly that the wavelength decreases along the channel. Wave crest and 
trough positions were obtained from the turning points of the centre streamline (see 
figure 8 below), and the (primary) wavelength was estimated from these values. Near 
t = 0.5 the wavelength was found to  vary from approximately 11 near the step to 
approximately 4 near the wavefront. 
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FIGURE 6. Lower-wall vorticity for figure 5:  Re = 500, St = 0.006, 6 = 1. (a)  t = 0.05, 0.10, 0.15, 
0.20, 0.25 (i-v); ( b )  t = 0.30, 0.35, 0.40, 0.45, 0.50 (i-v); (c) t = 0.55, 0.60, 0.70, 0.80 (i-iv); ( d )  
t = 0.90, 0.95, 1.00, 1.10, 1.20 (i-v). 

The vorticity on the lower wall (shear stress) for this case is shown in figure 6. 
During the forward phase of the flow (t  < 0.5; figure 6 a ,  b )  the lower-wall vorticity 
takes its peak positive values under the first eddies just upstream of the reattachment 
points, and its peak negative values just downstream of the reattachment points. As 
a result the shear gradient is very large near reattachment points. The regions with 
the iowest wall shear magnitude are at the upstream end of the eddies where the core 
flow has moved away from the wall (it is also of course small in the step corner as can 
be deduced from the streamline plots). These peak values of wall shear are much 
greater in magnitude than the values in the parallel flow far downstream. Note also 
that the peaks are not stationary but move with the (downstream end) of the eddies, 
and that they decrease in magnitude with successive eddies, reflecting the gradual 
downstream weakening of the wave. 

When the flow reverses after t = 0.5, the peaks in the wall shear decay as the eddies 
are destroyed until by t = 0.7 (figure 6c) the residual waviness is relatively small with 
a large peak occurring near the step as the flow accelerates into the constricted part 
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FIGURE 7 .  Effect, of variation in the Reynolds number. Streamlines for St = 0.008, e = 1. 
f = 0.5, - 1.5 < x < 33.5; (a,) Re = 125, (b) Re = 250, (c) Re = 500, ( d )  Re; = 750. 

of the channel (x < 0). This peak decays in magnitude until a t  t = 1.0 (figure 6 4  the 
vort.icity on the lower wall shows relatively little variation. As the flow then 
accelerates down over the step a t  the start. of the second cycle, the peak in vorticity 
downstream of the step is re-established. Pi0t.e in particular the similarhy between 
the vorticity a t  t = 0.2 (figure 6aiv) and t = 1.2 (figure 6dv). 

4.2. Variation of Reynolds number 
First’, consider Reynolds numbers less than 500. In  this range, decreasing Re 
decreases the amplitude of the wave, as can be seen in figure 7 (a, b )  which shows 
streamlines for Re = 125 and 250 at  t = 0.5. Clearly the eddies are much weaker and 
have a simpler form than for Re = 500 (figure 7c).  These plots suggest that with a 
lower Reynolds number the wave does not, travel as far downstream as in the 
previous case. However, a detailed examination of the results for Re = 250 showed 
that a wave extends approximately as far downstream as for Re = 600, although it 
is much weaker. For Re = 125 there was also a wave much further dowrist#reani than 
is apparent from figure 7 (a),  although it could not be tracked as far down-t ream as 
for R e  = 250 arid 500. 

The streamline pattern for Re = 750 a t  1 = 0.5 is shown in figure 7 ( d ) .  The w i ~ v e  
here is basically similar to  that shown in figure 7 ( c )  for Re = 500, but, as might be 
expected, both the primary vortex wave and the secondary disturbance are stronger 
(see also table 1). I n  addition, both the total length of the wave and the (primary) 
wave1engt.h are similar. This is further illustrated by figure 8 which shows the centre 
streamline for Be = 250,500 and 750 with 8t = 0.006 and c = 1. Figure 8 also shows 
the initial downstream motion of the individual waves followed by a slight upstream 
motion before the flow reverses, as can be seen in figure 5 too, and demonstrates that 
the downstream peaks for Re = 750 are slightly further upstream than those for 
Re = 500. The latter result is consistent with a convected wavefront, as from t = 0 to 
0.5 a particle in parallel flow will travel a distance of 34.8 when Re = 750 and 36.5 
when Re = 500. As Re + co the unsteady flow in a parallel-sided channel tends to the 
potential solution of uniform flow in the channel, induced by vortex sheets at’ the 
walls. In  this limit a particle travels a distance of [nfJt( 1 + c)]-’; and t>his expression 
provides a lower bound for the distance a particle will travel in parallel flow (for 
Xt = 0.006 and e = 1 this value is 26.5 which is approached slowly as Re increases). An 
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FIGURE 8. Position of centre streamline for St = 0.006, B = 1, - 1.5 < x < 33.5. Each line shows 
the position of $ = ++kW (y against x). ---, Re = 250; . . . . ., Re = 500; -, Re = 750. 

FIGURE 9. Effect of variation in the Strouhal number. Streamlines for Re = 500, E = 1, t = 0.5, 
-1.5 < x Q 33.5: (a) St = 0.004, ( b )  St = 0.006, (c) St = 0.010. 

upper bound for a particle in parallel flow, given by modulated Poiseuille flow, is 1.6 
times the lower bound. 

4.3. Variation of Xtrouhal number 
If the wavefront is convected with the flow we would expect the total length of the 
wave to be (roughly) inversely proportional to the Strouhal number, as discussed 
above. Also, since an increase in St with no change in Re can be achieved by an 
increase in the frequency of the oscillation with no change in the peak mass flux, we 
might also expect a more vigorous response from the flow with an increase in strength 
of the vortex wave. Both of these predictions are borne out, as shown in figure 9 
which displays the streamlines for Re = 500 at t = 0.5 with St = 0.004, 0.006, and 
0.010. The increase in strength with St at other times can be seen from table 2. Clearly 
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FIGURE 10. Effect of variation in the step size. Streamlines for Re = 500, St = 0.006, t = 0.5, 
- 1.5 < z < 33.5 : (a )  E = 0.25, (b) 6 = 0.5, ( c )  E = 1, (d) € = 2. 

St = 0.004 0.006 0.010 

t 

0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 

1 

0.000 
0.000 

-0.024 
-0.044 
- 0.056 
-0.068 
- 0.083 
-0.103 
-0.138 
- 0.202 

U 

0.014 
0.063 
0.073 
0.086 
0.098 
0.105 
0.109 
0.113 
0.127 
0.197 

1 

0.000 
0.000 

-0.010 
-0.057 
- 0.077 
- 0.092 
-0.114 
-0.143 
-0.186 
-0.255 

7L 

0.008 
0.073 
0.087 
0.095 
0.106 
0.117 
0.125 
0.135 
0.182 
0.258 

1 

0.OOO 
0.000 
0.000 

-0.027 
-0.101 
-0.141 
-0.169 
-0.206 
-0.258 
-0.335 

U 

0.003 
0.063 
0.114 
0.122 
0.127 
0.136 
0.148 
0.194 
0.257 
0.342 

TABLE 2. Variation of maximum eddy strengths with the Strouhal number: 1 gives the minimum 
value of the streamfunction (which is zero on the lower wall) and u the difference between the 
maximum value of the streamfunction and the value on the upper wall. Re = 500, E = 1. 

both the primary wave and the secondary disturbance increase in strength as Xt 
increases, while with Re and E fixed the total length of the wave, the wavelength and 
the number of (primary) eddies generated increases when St decreases. Although the 
secondary disturbance is weaker, the eddies are still markedly asymmetric at  the 
lowest Strouhal number considered here. 

4.4. Variation in step height E 

Not surprisingly, one effect of decreasing the step size is to decrease the strength of 
the wave, as can be seen from figure 10 which shows the streamlines for Re = 500 and 
St = 0.006 a t  t = 0.5 with E = 0.25, 0.5, 1 and 2. In  fact, for much of the time up to 
t = 0.5, the flow over a step of size 0.5 or less resembles steady flow over a backward- 
facing step (see e.g. Cherdron et al. 1978; Armaly et al. 1983; Durst & Pereira 1988) 
with a small number of relatively weak eddies showing back-to-front symmetry 
rather than the highly disturbed flow seen with a bigger step. However, even €or a 
small step the eddies increase in size and strength with time, and the flow pattern is 
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€ =  0.5 1 2 

1 1 U 1 1 .  1 U 

0.05 0.000 
0.10 0.000 
0.15 0.000 
0.20 0.000 
0.25 0.000 
0.30 -0.003 
0.35 -0.011 
0.40 -0.028 
0.45 -0.063 
0.50 -0.140 

0.005 
0.016 
0.019 
0.023 
0.026 
0.028 
0.031 
0.039 
0.060 
0.115 

0.000 
0.000 

-0.010 
-0.057 
-0.077 
- 0.092 
-0.114 
-0.143 
-0.186 
-0.255 

0.008 
0.073 
0.087 
0.095 
0.106 
0.117 
0.125 
0.135 
0.182 
0.258 

0.000 
0.000 

-0.010 
-0.178 
-0.308 
-0.315 
-0.317 
-0.378 
-0.368 
-0.461 

0.007 
0.134 
0.274 
0.296 
0.312 
0.327 
0.365 
0.355 
0.433 
0.541 

TABLE 3. Variation of maximum eddy strengths with the channel width : 1 gives the minimum value 
of the streamfunction (which is zero on the lower wall) and u the difference between the maximum 
value of the streamfunction and the value on the upper wall. Re = 500, St = 0.006. 

not symmetric about t = 0.25, so cannot be said to be truly quasi-steady. Also, for 
e = 0.25 and 0.5 the wave could not be tracked as far downstream as a particle 
travels in parallel flow. 

The effect on the flow of varying Re and Xt was investigated for E = 0.5. The 
changes were qualitatively similar to those described above for E = 1 :  i.e. the 
wavelength and total length of the wave are only weakly dependent on Re but 
inversely proportional to Xt, and the strength of both the primary wave and 
secondary disturbances increase as Re or St is increased. There is one important 
difference, however, in that even for the strongest waves, the total wave is much 
shorter than the distance travelled by a particle in parallel flow : for St = 0.006 the 
wavefront reaches x = 30 (approximately) whereas a particle in parallel flow would 
travel to x = 48.0 by t = 0.5. Thus a mechanism based on a wavefront simply 
convected by the parallel flow ahead of the wave cannot be invoked to explain the 
generation of the wave in this channel. 

The flow in channels with E > 1 was also investigated. For Re = 500 and St = 0.006 
the total length of the wave was shorter but stronger for E = 2 than for c = 1 (see 
figure 1Od). As E was increased further, up to 4, the wave increased in strength and 
slowly decreased in length. A comparison with the distance travelled by a particle in 
parallel flow, which is almost inversely proportional to the channel width when H e  
and St are held constant, showed that, in contrast to the case with c < 1, the parallel- 
flow calculation underestimates the length of the wave for E > 1,  the difference 
increasing with E. However, a change in Re and Xt has the same general effect as 
before. 

For the range of parameters considered here, our calculations showed that with Re 
and St held constant, the (primary) wavelength increases as c increases, provided the 
wave is fully established (this is opposite to the predictions of the simple model of 
Tutty & Pedley 1992). Also, the wave increases in strength as the step size increases, 
as can be seen from table 3 which gives the maximum eddy strengths for E = 0.5, 1 ,  
and 2 with Re = 500 and St = 0.006 (note that the erratic changes in the values given 
for E = 2 are due to a change in the relative strength of different eddies rather than 
a sudden change in the flow). 

We have used the minimum (left) channel width as the lengthscale for non- 
dimensionalization. Instead, we could have used the maximum (right) width and 
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varied the step size by varying the width on the left. This would be most easily 
accomplished by geometrically rescaling the present problem and expressing the 
results in terms of the Strouhal number Xt, = (1  +€)‘St (the Reynolds number is 
independent of the channel width and therefore is not affected by the resealing). 
Comparing (the rescaled) results for c = 0.5, 1, and 2 with St, = 0.024 (i.e. St = 0.006 
when c = 1), we found that, again, increasing the step size (i.e. decreasing the width 
on the left) leads to a stronger wave with a longer (primary) wavelength. Also, as 
implied by the above discussion comparing the motion of the wavefront with that of 
a particle in parallel flow, the total length of the wave increases as the step size is 
increased while the other parameters are held constant. 

5. Generation and development of the vortex wave 
As an alternative to the simple convective model, which is not fully consistent with 

the numerical results, we will now consider, in turn, the generation and development 
of both the primary wave and the secondary disturbance in terms of vortex 
dynamics.t 

The streamlines and vorticity distribution for Re = 500, St = 0.006, and 8 = 2 are 
shown in figure 11 (plates 1 and 2). We see that, as the flow is accelerated from rest, 
vorticity generated on the upper wall upstream of the step is swept into the channel 
from the corner, forming a tongue of vorticity which then rolls up. The vorticity 
convected back towards the step forms the core of the main eddy which develops in 
the lee of the step. The positive vorticity in this eddy will act to pull the core flow 
immediately downstream of the eddy towards the upper wall, and thus enhance the 
natural motion of the fluid away from the lower wall as the core flow expands to fill 
the channel; by t = 0.15 negative vorticity generated at  the lower wall is being 
convected away from the wall to form another tongue. Overlaying streamlines and 
velocity vectors on the vorticity distribution showed that the vorticity is carried 
away from the lower wall by the core flow, rather than being ejected by a local 
process of breakaway separation. In turn, the second tongue of vorticity rolls up to 
form the core of the first major eddy on the lower wall, which grows in strength and 
size as the rollup continues, with the core flow displaced towards the upper wall. By 
t = 0.2 a region of negative vorticity exists in the centre of the channel, forming a 
‘vortex’ which acts to pull the flow immediately downstream of the eddy away from 
the upper wall and thereby help to create another tongue of (positive) vorticity 
which is convected away from the wall and in turn rolls up to form the core of the 
next eddy on the upper wall. This process continues with eddies being created 
successively on the upper and lower walls. Note that the characteristic ‘backward 
sloping ’ shape which the eddies take as they develop is a natural consequence of their 
formation by the rollup of a tongue of vorticity (see e.g. t = 0.25 in figure l l ) ,  and 
that, with the possible exception of the eddy formed in the lee of the step, the rollup 
of the tongues of vorticity is not in this problem initiated by entrainment of the 
vorticity into existing eddies; rather vorticity rolls up to form the initial major core 
in each flow structure. 

t The description of the wave development expounded here is based on a detailed examination 
of the solutions for a large number of cases. The behaviour of the flow was studied by overlaying 
streamlines and/or velocity vectors on colour-coded vorticity plots, including cases where the local 
dynamical behaviour was examined by calculating the velocity relative to the movement of the 
eddies. Of necessity, only a few of these plots can be reproduced here; these were selected t o  
illustrate as clearly as possible the important stages in the development of the flow. 



Journal of Fluid Mechanics, Lbl. 247 

FIGURE 11. For caption see next page. 

TUTTY & PEDLEY 

Plate 1 

(Facing p .  198) 
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FIGURE 11. Streamlines and vorticity for Re = 500, St = 0.006, E = 2, -1.5 i x  5 29: t = 0.05 to 0.5 in steps 
of 0.05. The streamfunction is plotted for 3 = -0.05,0.05 and in increments of 0.1 above II/ and below zero, 
and in increments of '/s 3 ,  between zero and 3 w. 

FIGURE 12. Streamlines and vorticity for Re = 500, St = 0.006, E = 2, f = 0.375, 2.5 5 x 5 17.5. Same 
streamfunction values as for figure 11. 

TUTTY & PEDLEY 
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Turning to the secondary disturbance, we will now argue that this can also be 
explained in terma of vortex dynamics. Considering the first major eddylflow 
structure formed on the lower wall, we see that, as the negative vorticity convected 
from the wall into the centre of t h e  channel rolls up to form the characterist,ic 
backward sloping eddy, which is evident by t = 0 .25 ,  positive vorticity is generated 
a t  the wall by the reverse flow in the eddy near the wall. This vorticity is convected 
away from the wall into a region with relatively low velocity, where by t = 0.3 the 
tongue has rolled up and there is a ‘comma’ shaped region of positive vorticity 
between the wall and the core flow immediately upstream of the main eddy ; the head 
of the ‘comma’ forms the core of a positively rotating eddy (marked as B1 on figure 
13a below). Simple vortex dynamics suggest that  the presence of this ‘vortex’ close 
to  t,he core flow will result in a local deceleration of the core flow, and indeed by 
t = 0.3 there is an appreciable thickening of the core shear layer in this region 
(figure 11). By t = 0.35 negative vorticity originally carried by the core flow has been 
convected away by t,he action of the positive vortex (R1 ) to  create a narrow tongue 
of negative vorticity extending from the core flow towards the wall (figure ll),  which 
by t = 0.375 (figure 12, plate 2) forms the core of an elongated eddy upstream of  the 
primary eddy ( C l  on figure 136). The two (negative) eddies (A1 and C1 on figure 136) 
join by t = 0.4, with the tongue of vorticity that was convected from the core lying 
along the arm of the primary eddy which extends to  the upstream wall. 

By t = 0.425, a small negative eddy (Dl ,  figure 13d) has formed between the core 
flow and the positive eddy B1, with its vorticity coming from the region of 
concentrated negative vorticity lying at  the top of the arm of A1 a t  t = 0.4. The 
original core (Al)  continues to grow in strength. By t = 0.45 eddy D l  forms one of 
two co-rotating cores of a much larger eddy, with flow which previously went below 
eddy B l  changing direction and now going below the second core (El, figure 13e). 
Also, there is a noticeable thickening of the core shear layer with a concentration of 
negative vorticity on the left of El, caused it appears by a change in the path of the 
core flow at about t = 0.425, and, possibly, diffusion of vorticity from the high- 
vorticity, high-velocity core flow to the low-vorticity, low-velocity region near the 
wall. This vorticity rolls up and feeds into eddy El, which grows rapidly until by 
t = 0.475 D l  has vanished as a separate core, with its vorticity for the most part being 
entrained into R1. By t = 0.5, R1 is slightly stronger than A l ,  while I31 has bcen 
destroyed with its vorticity convected along the lower side of E l .  Similarly, positivc 
vorticity has been convected from eddy A0 along the top side of E l  (figure 11). 

Examining the flow in the lee of the step we see a similar pattern, but with a 
different final structure due to the presence of the step. Downstream, however, each 
major eddy structure develops in the same manner, but a t  any given time they are 
a t  different stages of development as they have existed for successively shorter times. 
For example, a t  t = 0.45 the second structure on the lower wall is similar to, but 
shorter than, the first a t  t = 0.35. Note, however, that unlike B1, eddy B2 (figure 13) 
is not destroyed, and that although it  is very weak by t = 0.45 it  then grows again 
as i t  is fed negative vorticity, mainly from that generated by A2 at the wall, but with 
a contribution from the vorticity generated on the upper wall by the mainstream. 

I n  general, we have found that the wavelength decreases with distance along the 
channel, which is consistent with a convective mechanism as the later eddies are 
generated when the flow is decelerating, and thus the vorticity would not be carried 
as far downstream. Also, the later eddies will be weaker as they have less time to 
develop. After they are formed the eddieslwave crests move downst)ream for a time, 
but start! moving ba,ck towards the step before the ma88 flow rt:vwscs at t = 0.5 (see 
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FIGURE 13. StreamlinesforRe = 500, St = 0.006, B = 2 ,  2.5 < x < 17.5: t = 0.3,0.375,0.400,0.425, 
0.45,0.475,0.5 (a-g). Usual values (i.e. as for figure 5) with extra values close to zero (positive) and 
+w (less than $w) in (a-f). 
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e.g. figure 8). This phenomenon can be interpreted in terms of vortex dynamics by 
considering the inviscid flow in a channel given by a system of image vortices, as 
suggested by Ralph & Pedley (1989), where the vortices would translate towards the 
step unless there was counterbalancing advection, e.g. by the mainstream. 

It remains to consider the effects of parameter variation. The cross-sectionally 
averaged dimensionless velocity is inversely proportional to the Strouhal number but 
independent of the Reynolds number, and since the proposed mechanism relies on 
vorticity convected away from the walls by the core flow, we might expect that  the 
total length of the wave will obey the same relationship. For a given E this criterion 
was found to give a reasonable estimate provided Re was large enough. For lower Re 
(e.g. Re = 250 with E = 1 ; figure 7 b )  the tongues of vorticity convected away from 
the wall were both thicker and weaker, and, not surprisingly, were much less inclined 
to roll up and form the strong, asymmetric, eddies found a t  higher Re. 

I n  $4  we found that the distance travelled by a particle a t  the centre of the channel 
in parallel flow gave a reasonable estimate of the total length of the wave for E = 1 ,  
but overestimated the length of the wave with a smaller step and underestimated it 
for a larger step. A detailed examination of the solution for e = 0.5, Re = 2000, and 
St = 0.006, showed that, while the development of the wave was broadly similar to 
that described above for E = 2, the displacement of the streamlines away from the 
wall and the rollup of vorticity were restricted by the reduced width of the channel, 
and that the streamwise velocity of the fluid carrying the vorticity away from the 
wall is significantly less than the centreline velocity in parallel flow. I n  contrast, for 
E = 2, the core flow between the eddies occupies a relatively narrow region of the 
channel, and near the wavefront the fluid carrying the vorticity away from the walls 
has a streamwise velocity that is consistently significantly greater than the 
corresponding centreline velocity for parallel flow. Thus vorticity is convected 
downstream a t  a rate greater than that predicted by parallel flow. Hence, again, the 
results are consistent with the mechanism proposed above. 

The wavelength (i.e. the length of an individual flow structure) increases with the 
step size. This can be explained by observing that with a larger step the vorticity is 
convected further away from the walls and thus has more space and time to roll up 
before reattaching to the wall a t  the downstream end of the eddy, which also explains 
why there are fewer eddieslflow structures with a larger step. That, for a given step 
size, the wavelength decreases as the Strouhal number increases (figure 9) is 
consistent with fluid particles travelling a distance inversely related to  the Strouhal 
number. 

6.  Further discussion 
The present results may be compared with the experimental observations by 

Sobey (1985) of flow in a three-dimensional rectangular channel with aspect ratio 
7.5 : 1 .  The experiments covered a smaller range of Re than our calculations, and for 
a right-angled asymmetric expansion were restricted to  E = 1.  Sobey found 
instabilities and three-dimensional effects a t  higher Reynolds numbers that are 
absent from the above predictions, so only a limited comparison can be made. 
However, there is good qualitative agreement, particularly with respect to  the 
generation of a vortex wave, the general shape and motion of the eddies, and the 
effect of varying the Strouhal number. In  addition to the experiments, Sobey 
performed a small number of calculations for flow in a periodic channel using a 
different finite difference method to that used here. Although Sobey’s calculations 
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were for a somewhat different geometry, there is general consistency between his 
results and ours. 

We can also compare our results with those from related problems. Tutty (1992) 
gave numerical results for pulsatile flow (with a non-zero mean mass flux) in a locally 
constricted channel. A vortex wave was found with essentially the same behaviour 
and parameter dependence as described above. Pedley & Stephanoff (1985) and 
Ralph & Pedley (1988, 1989, 1990) studied the flow in a channel where a disturbance 
is imposed on an otherwise steady flow by a sinusoidal oscillation of a port,ion of one 
wall. Although the mainstream did not reverse in that problem, the experiments and 
calculations showed the generation of a vortex wave which in many ways is similar 
to that shown in figure 5 above. There are however some notable differences. For 
example, the eddies propagate downstream, albeit with a phase velocity which waJs 
lower than the wavefront velocity by a factor of 2.3 to 4.6. 

Further, our results do not show ‘eddy doubling’, the asymmetric evolution of an 
eddy which initially shows a significant degree of fore-aft symmetry, with the closed 
streamlines concentrating near the reattachment point and the eddy eventually 
splitting into two, as found in the moving-wall problem. Examining the results of 
Ralph & Pedley (1988)’ in particular figure 4, we see that i t  is only the two eddies 
closest to the indentation that split, and that the eddies further downstream have the 
characteristic backward-sloping appearance found above. Ralph & Pedley identified 
the process of eddy doubling with the convection of vorticity towards the 
downstream end of the eddy, resulting in an increasing degree of non-symmetry, and 
the generation of vorticity of the opposite sign on the wall and its subsequent 
convection around the eddy and into the channel. Clearly, this process is consistent 
with the mechanism for wave generation presented in $5 above, the difference being 
that the waveleddy already existed in the moving-wall case before vorticity 
generation at  the wall and vortex dynamics came into play, whereas in the present 
case it is the vortex dynamics that generate the eddies. As the ,qtrength of the wave 
increases in t h e  moving-wall problem, so does the similarity with our results (see 
figure 10 of Ralph & Pedley 1988). 

For the moving-wall problem, the inviscid, long-wavelength, small-amplitude 
theory of Pedley & Stephanoff (1985) predicted the formation of a wavetrain during 
each cycle. Tn that theory the displacement of the core-flow streamlines satisfies a 
linearized Korteweg-de Vries equation. Predictions of wave crest positions were 
compared with experimental results and with values from Navier-Stokes and Euler 
calculations (Pedley & Stephanoff 1985; Ralph & Pedley 1988, 1989, 1990), with 
reasonable agreement. I n  particular, the results from the Euler solution for a small- 
amplitude wall disturbance and the inviscid theory agreed almost perfectly as long 
as account was t.aken of the acceleration and deceleration of the downstream mean 
flow caused by the motion of the indentation. 

A similar inviscid, small-amplitude theory can be derived for flow in a rigid non- 
uniform channel with an unsteady mean flow (Tutty & Pedley 1992). The theory 
assumes a small-amplitude perturbation to a non-reversing parallel flow in a channel 
with a smooth change in width, not oscillatory flow in a stepped channel. However, 
in the moving-wall case the correct pattern of behaviour was predicted in rcginns of 
parameter space which, strictly, are outside the range of validity of the theory, and 
a qualitative comparison can be made for the present prohlem. For flow into an 
expansion, Tutty & Pedley (1992) predict the existence of a wave with positive group 
arid zero phase velocity, i.e. a standing wave with a wavefront propagating 
downstream, and a wavelength that is only weakly dependent on Re, which agrees 
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with our results. However, in the theory the wave is generated during acceleration 
of the flow, and the wavelength is (essentially) independent of St, which does not 
agree. I n  addition, the theory predicts that the wavelength will decrease as the step 
height increases, whereas our numerical results show the reverse trend. For flow into 
a constriction, Tutty & Pedley (1992) predict a t  best a very weak wave, which agrees 
with the present results. We note that solutions for pulsatile flow (i.e. with a non-zero 
mean) in a constricted channel (Tutty 1992), which might be expected to show a 
better agreement with the theory, showed a pattern of behaviour similar to that 
found here, and thus also disagrees with the theory in important respects. 

The computations of Ralph & Pedley (1989), in which the Euler equations were 
solved for the moving-wall problem with rotational, Poiseuille flow upstream, 
showed that the primary wave generation process is essentially inviscid in that 
problem, involving only the redistribution of the upstream vorticity. Comparison 
with the Navier-Stokes calculations for the same problem, however, demonstrated 
that the secondary disturbance and eddy doubling require the presence of viscosity. 
We could compute an inviscid rotational flow in our channel, but it would in one 
important sense be arbitrary in that there is no natural rotational flow to impose 
upstream. In  fact the inviscid limit for the present problem is the time-modulated 
potential flow with the streamlines given by the grid lines Y = constant (see figure 2). 

Both our results and those of the moving-wall problem suggest that for a vortex 
wave to form the combination of geometry and flow conditions must be such that 
concentrated regions of (relatively) strong vorticity can form in the channel. In  our 
problem, vorticity is shed naturally from the step into the expansion during forward 
flow, but not during reverse flow; some vorticity is shed similarly from the 
indentation in the viscous moving-wall problem, but there is also a mechanism for 
vorticity concentration that is essentially inviscid : as shown in the inviscid 
computation of Ralph & Pedley (1989), the motion of the indentation, and the 
consequent movement of the streamlines away from the wall, allows the formation 
of an eddy in the lee of the indentation consisting of fluid which was originally near 
the wall and thereby carrying strong vorticity. In contrast, with the grooved channel 
of Ghaddar et al. (1968a, b ) ,  shear layers form across the mouths of the grooves but 
this vorticity is not carried into the channel, and although relatively large-scale 
unsteady effects were found, these did not take the form of a vortex wave, a t  least 
for the range of parameters considered by Ghaddar et al., even when the flow was 
subjected to an oscillatory perturbation a t  the resonant frequency (Ghaddar et al. 
19866). 

Neither the primary vortex wave nor the secondary disturbance have been 
examined in terms of a standard unforced flow instability, e.g. in terms of 
Tollmien-Schlichting or Rayleigh waves, as the predictability and robustness of the 
phenomena reported here suggests that a more deterministic approach is appropriate, 
unlike, for example, some of the results reported by Ralph & Pedley (1990) for a 
channel with a moving indentation. 

One motivation for this work comes from the conjectured relationship between 
regions of low and oscillating wall shear stress (vorticity) and the pattern of 
development of atherosclerosis in mammalian arterial blood vessels. Being two- 
dimensional the problem is highly idealized from a physiological viewpoint, but the 
results suggest that, even for a relatively low-frequency unsteady flow, an expansion 
in the vessel will lead to a complex pattern of wall shear stress with peak values far 
in excess of those found in a uniform vessel, while a flow into a constriction will be 
much simpler. Further, the distribution of regions of the vessel walls subject to 
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consistently higher or lower than average shear stress will depend in a non-trivial 
manner on the flow parameters and the geometry. The only constant prediction is 
that the wall shear stress in the immediate lee of the step/expansion will be low. 
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